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Abstract

Multimodal emotion recognition aims to rec-
ognize emotions for each utterance of multiple
modalities, which has received increasing at-
tention for its application in human-machine
interaction. Current graph-based methods fail
to simultaneously depict global contextual fea-
tures and local diverse uni-modal features in
a dialogue. Furthermore, with the number of
graph layers increasing, they easily fall into
over-smoothing. In this paper, we propose a
method for joint modality fusion and graph
contrastive learning for multimodal emotion
recognition (JOYFUL), where multimodality fu-
sion, contrastive learning, and emotion recogni-
tion are jointly optimized. Specifically, we first
design a new multimodal fusion mechanism
that can provide deep interaction and fusion be-
tween the global contextual and uni-modal spe-
cific features. Then, we introduce a graph con-
trastive learning framework with inter-view and
intra-view contrastive losses to learn more dis-
tinguishable representations for samples with
different sentiments. Extensive experiments on
three benchmark datasets indicate that JOYFUL
achieved state-of-the-art (SOTA) performance
compared to all baselines. 1

1 Introduction

“Integration of information from multiple sensory
channels is crucial for understanding tendencies
and reactions in humans” (Partan and Marler,
1999). Multimodal emotion recognition in conver-
sations (MERC) aims exactly to identify and track
the emotional state of each utterance from hetero-
geneous visual, audio, and text channels. Due to its
potential applications in creating human-computer
interaction systems (Li et al., 2022b), social media
analysis (Gupta et al., 2022; Wang et al., 2023),
and recommendation systems (Singh et al., 2022),
MERC has received increasing attention in the nat-
ural language processing (NLP) community (Poria

1Code is released on Github (https://anonymous/MERC).

[Surprise] Don’t you do that. Don’t  you 
say goodbyes. Do you understand ?

[Fear] I am so cold.

[Sad] You’re gonna get out of here and you’re 
gonna make lots of babies and watch them grow.

[Fear] It’s getting quiet. I love you, Jack. 𝑢!"
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[Sad] Winning that ticket was the best thing that 
ever happened to me. It took me to meet you.

[sad] I can’t feel my body.

[Fear] You must promise me that you’ll 
survive, you won’t give up.

Figure 1: Emotions are affected by multiple uni-modal,
global contextual, intra- and inter-person dependencies.
Images are from the movie “Titanic”.

et al., 2019b, 2021), which even has the potential
to be widely applied in other tasks such as question
answering (Ossowski and Hu, 2023; Wang et al.,
2022b; Wang, 2022), text generation (Liang et al.,
2023; Zhang et al., 2023; Li et al., 2022a) and bioin-
formatics (Nicolson et al., 2023; You et al., 2022).

Figure 1 shows that emotions expressed in a
dialogue are affected by three main factors: 1) mul-
tiple uni-modalities (different modalities complete
each other to provide a more informative utterance
representation); 2) global contextual information
(uA3 depends on the topic “The ship sank into the
sea”, indicating fear); and 3) intra-person and inter-
person dependencies (uA6 becomes sad affected by
sadness in uB4 &uB5 ). Depending on how to model
intra-person and inter-person dependencies, current
MERC methods can be categorized into Sequence-
based and Graph-based methods. The former (Dai
et al., 2021; Mao et al., 2022; Liang et al., 2022)
use recurrent neural networks or Transformers to
model the temporal interaction between utterances.
However, they failed to distinguish intra-speaker
and inter-speaker dependencies and easily lost uni-
modal specific features by the cross-modal atten-
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tion mechanism (Rajan et al., 2022). Graph struc-
ture (Joshi et al., 2022; Wei et al., 2019) solves
these issues by using edges between nodes (speak-
ers) to distinguish intra-speaker and inter-speaker
dependencies. Graph Neural Networks (GNNs) fur-
ther help nodes learn common features by aggregat-
ing information from neighbours while maintaining
their uni-modal specific features.

Although graph-based MERC methods have
achieved great success, there still remain problems
that need to be solved: 1) Current methods directly
aggregate features of multiple modalities (Joshi
et al., 2022) or project modalities into a latent
space to learn representations (Li et al., 2022e),
which ignores the diversity of each modality and
fails to capture richer semantic information from
each modality. They also ignore global contex-
tual information during the feature fusion process,
leading to poor performance. 2) Since all graph-
based methods adopt GNN (Scarselli et al., 2009)
or Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017), with the number of layers deep-
ening, the phenomenon of over-smoothing starts
to appear, resulting in the representation of sim-
ilar sentiments being indistinguishable. 3) Most
methods use a two-phase pipeline (Fu et al., 2021;
Joshi et al., 2022), where they first extract and fuse
uni-modal features as utterance representations and
then fix them as input for graph models. However,
the two-phase pipeline will lead to sub-optimal per-
formance since the fused representations are fixed
and cannot be further improved to benefit from the
downstream supervisory signals.

To solve the above-mentioned problems, we pro-
pose Joint multimodality fusion and graph con-
trastive learning for MERC (JOYFUL), where multi-
modality fusion, graph contrastive learning (GCL),
and multimodal emotion recognition are jointly op-
timized in an overall objective function. 1) We
first design a new multimodal fusion mechanism
that can simultaneously learn and fuse a global
contextual representation and uni-modal specific
representations. For the global contextual represen-
tation, we smooth it with a proposed topic-related
vector to maintain its consistency, where the topic-
related vector is temporally updated since the topic
usually changes. For uni-modal specific represen-
tations, we project them into a shared subspace to
fully explore their richer semantics without losing
alignment with other modalities. 2) To alleviate
the over-smoothing issue of deeper GNN layers,

inspired by You et al. (2020), that showed con-
trastive learning could provide more distinguish-
able node representations to benefit various down-
stream tasks, we propose a cross-view GCL-based
framework to alleviate the difficulty of categorizing
similar emotions, which helps to learn more distinc-
tive utterance representations by making samples
with the same sentiment cohesive and those with
different sentiments mutually exclusive. Further-
more, graph augmentation strategies are designed
to improve JOYFUL’s robustness and generalizabil-
ity. 3) We jointly optimize each part of JOYFUL in
an end-to-end manner to ensure global optimized
performance. The main contributions of this study
can be summarized as follows:

• We propose a novel joint leaning framework
for MERC, where multimodality fusion, GCL,
and emotion recognition are jointly optimized for
global optimal performance. Our new multimodal
fusion mechanism can obtain better representations
by simultaneously depicting global contextual and
local uni-modal specific features.

• To the best of our knowledge, JOYFUL is the
first method to utilize graph contrastive learning for
MERC, which significantly improves the model’s
ability to distinguish different sentiments. Multiple
graph augmentation strategies further improve the
model’s stability and generalization.

• Extensive experiments conducted on three mul-
timodal benchmark datasets demonstrated the ef-
fectiveness and robustness of JOYFUL.

2 Related Work

2.1 Multimodal Emotion Recognition

Depending on how to model the context of utter-
ances, existing MERC methods are categorized
into three classes: Recurrent-based methods (Ma-
jumder et al., 2019; Mao et al., 2022) adopt RNN
or LSTM to model the sequential context for each
utterance. Transformers-based methods (Ling et al.,
2022; Liang et al., 2022; Le et al., 2022) use
Transformers with cross-modal attention to model
the intra- and inter-speaker dependencies. Graph-
based methods (Joshi et al., 2022; Zhang et al.,
2021; Fu et al., 2021) can control context informa-
tion for each utterance and provide accurate intra-
and inter-speaker dependencies, achieving SOTA
performance on many MERC benchmark datasets.
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Figure 2: Overview of JOYFUL. We first extract uni-modal features, fuse them using a multimodal fusion module,
and use them as input of the GCL-based framework to learn better representations for emotion recognition.

2.2 Multimodal Fusion Mechanism

Learning effective fusion mechanisms is one of the
core challenges in multimodal learning (Shankar,
2022). By capturing the interactions between differ-
ent modalities more reasonably, deep models can
acquire more comprehensive information. Current
fusion methods can be classified into aggregation-
based (Wu et al., 2021; Guo et al., 2021), alignment-
based (Liu et al., 2020; Li et al., 2022e), and their
mixture (Wei et al., 2019; Nagrani et al., 2021).
Aggregation-based fusion methods (Zadeh et al.,
2017; Chen et al., 2021) adopt concatenation, ten-
sor fusion and memory fusion to combine multi-
ple modalities. Alignment-based fusion centers
on latent cross-modal adaptation, which adapts
streams from one modality to another (Wang et al.,
2022a). Different from the above methods, we
learn global contextual information by concatena-
tion while fully exploring the specific patterns of
each modality in an alignment manner.

2.3 Graph Contrastive Learning

GCL aims to learn representations by maximizing
feature consistency under differently augmented
views, that exploit data- or task-specific augmenta-
tions, to inject the desired feature invariance (You
et al., 2020). GCL has been well used in the NLP
community via self-supervised and supervised set-
tings. Self-supervised GCL first creates augmented
graphs by edge/node deletion and insertion (Zeng
and Xie, 2021), or attribute masking (Zhang et al.,
2022). It then captures the intrinsic patterns and
properties in the augmented graphs without using
human provided labels. Supervised GCL designs
adversarial (Sun et al., 2022) or geometric (Li et al.,
2022d) contrastive loss to make full use of label in-

formation. For example, Li et al. (2022c) first used
supervised CL for emotion recognition, greatly im-
proving the performance. Inspired by previous
studies, we jointly consider self-supervised (suit-
able graph augmentation) and supervised (cross-
entropy) manners to fully explore graph structural
information and downstream supervisory signals.

3 Methodology

Figure 2 shows an overview of JOYFUL, which
mainly consists of four components: (A) a uni-
modal extractor, (B) a multimodal fusion (MF)
module, (C) a graph contrastive learning module,
and (D) a classifier. Hereafter, we give formal
notations and the task definition of JOYFUL, and
introduce each component subsequently in detail.

3.1 Notations and Task Definition

In dialogue emotion recognition, a training dataset
D = {(Ci,Yi)}Ni=1 is given, where Ci represents
the i-th conversation, each conversation contains
several utterances Ci = {u1, . . . ,um}, and Yi ∈
Ym, given label set Y = {y1, . . . , yk} of k emo-
tion classes. Let Xv, Xa, Xt be the visual, audio,
and text feature spaces, respectively. The goal of
MERC is to learn a function F : Xv×Xa×Xt →
Y that can recognize the emotion label for each
utterance. We utilize three widely used multimodal
conversational benchmark datasets, namely IEMO-
CAP, MOSEI, and MELD, to evaluate the perfor-
mance of our model. Please see Section 4.1 for
their detailed statistical information.

3.2 Uni-modal Extractor

For IEMOCAP (Busso et al., 2008), video features
xv ∈ R512, audio features xa ∈ R100, and text fea-



tures xt ∈ R768 are obtained from OpenFace (Bal-
trusaitis et al., 2018), OpenSmile (Eyben et al.,
2010) and SBERT (Reimers and Gurevych, 2019),
respectively. For MELD (Poria et al., 2019a), xv ∈
R342, xa ∈ R300, and xt ∈ R768 are obtained
from DenseNet (Huang et al., 2017), OpenSmile,
and TextCNN (Kim, 2014). For MOSEI (Zadeh
et al., 2018), xv ∈ R35, xa ∈ R80, and xt ∈ R768

are obtained from TBJE (Delbrouck et al., 2020),
LibROSA (Raguraman et al., 2019), and SBERT.
Textual features are sentence-level static features.
Audio and visual modalities are utterance-level fea-
tures by averaging all the token features.

3.3 Multimodal Fusion Module
Though the uni-modal extractors can capture long-
term temporal context, they are unable to handle
feature redundancy and noise due to the modality
gap. Thus, we design a new multimodal fusion
module (Figure 2 (B)) to inherently separate mul-
tiple modalities into two disjoint parts, contextual
representations and specific representations, to ex-
tract the consistency and specificity of heteroge-
neous modalities collaboratively and individually.

3.3.1 Contextual Representation Learning
Contextual representation learning aims to explore
and learn hidden contextual intent/topic knowledge
of the dialogue, which can greatly improve the per-
formance of JOYFUL. In Figure 2 (B1), we first
project all uni-modal inputs x{v,a,t} into a latent
space by using three separate connected deep neu-
ral networks fg

{v,a,t}(·) to obtain hidden represen-
tations zg

{v,a,t}. Then, we concatenate them as zg
m

and apply it to a multi-layer transformer to maxi-
mize the correlation between multimodal features,
where we learn a global contextual multimodal rep-
resentation ẑg

m. Considering that the contextual
information will change over time, we design a
temporal smoothing strategy for ẑg

m as

Jsmooth = ∥ẑg
m − zcon∥2, (1)

where zcon is the topic-related vector describing the
high-level global contextual information without
requiring topic-related inputs, following the defini-
tion in Joshi et al. (2022). We update the (i+1)-th
utterance as zcon ← zcon+eη∗iẑg

m, and η is the ex-
ponential smoothing parameter (Shazeer and Stern,
2018), indicating that more recent information will
be more important.

To ensure fused contextual representations cap-
ture enough details from hidden layers, Hazarika

et al. (2020) minimized the reconstruction error be-
tween fused representations with hidden represen-
tations. Inspired by their work, to ensure that ẑg

m

contains essential modality cues for downstream
emotion recognition, we reconstruct zg

m from ẑg
m

by minimizing their Euclidean distance:

J g
rec = ∥ẑg

m − zg
m∥2. (2)

3.3.2 Specific Representation Learning
Specific representation learning aims to fully ex-
plore specific information from each modality to
complement one another. Figure 2 (B2) shows that
we first use three fully connected deep neural net-
works f ℓ

{v,a,t}(·) to project uni-modal embeddings
x{v,a,t} into a hidden space with representations as
zℓ
{v,a,t}. Considering that visual, audio, and text

features are extracted with different encoding meth-
ods, directly applying multiple specific features as
an input for the downstream emotion recognition
task will degrade the model’s accuracy. To solve it,
the multimodal features are projected into a shared
subspace, and a shared trainable basis matrix is
designed to learn aligned representations for them.
Therefore, the multimodal features can be fully
integrated and interacted to mitigate feature discon-
tinuity and remove noise across modalities. We
define a shared trainable basis matrix B with q ba-
sis vectors as B = (b1, . . . , bq)

T ∈ Rq×db with db
representing the dimensionality of each basis vec-
tor. Here, T indicates transposition. Then, zℓ

{v,a,t}
and B are projected into the shared subspace:

z̃ℓ
{v,a,t} = W{v,a,t}z

ℓ
{v,a,t}, B̃ = BWb, (3)

where W{v,a,t,b} are trainable parameters. To learn
new representations for each modality, we calculate
the cosine similarity between them and B as

S
{v,a,t}
ij = (z̃ℓ

{v,a,t})i · b̃j , (4)

where Sv
ij denotes the similarity between the i-th

visual feature (z̃ℓ
v)i and the j-th basis vector repre-

sentation b̃j . To prevent inaccurate representation
learning caused by an excessive weight of a certain
item, the similarities are further normalized by

S
{v,a,t}
ij =

exp (S
{v,a,t}
ij )∑q

k=1 exp (S
{v,a,t}
ik )

. (5)

Then, the new representations are obtained as

(ẑℓ
{v,a,t})i =

q∑
k=1

S
{v,a,t}
ik · b̃k, (6)



where ẑℓ
{v,a,t} are new representations, and we also

use reconstruction loss for their combinations

J ℓ
rec = ∥ẑℓ

m − zℓ
m∥2, (7)

where Concat( , ) indicating the concatenation, i.e.,
ẑℓ
m=Concat(ẑℓ

v, ẑ
ℓ
a, ẑ

ℓ
t ), z

ℓ
m = Concat(zℓ

v, z
ℓ
a, z

ℓ
t ).

Finally, we define the multimodal fusion loss by
combining Eqs.(1), (2), and (7) as:

Lmf = Jsmooth + J g
rec + J ℓ

rec. (8)

3.4 Graph Contrastive Learning Module
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Figure 3: An example of graph construction.

3.4.1 Graph Construction
Graph construction aims to establish relations be-
tween past and future utterances that preserve both
intra- and inter-speaker dependencies in a dialogue.
We define the i-th dialogue with P speakers as Ci =
{US1 , . . . ,USP }, where USi = {uSi

1 , . . . ,uSi
m} rep-

resents the set of utterances spoken by speaker Si.
Following Ghosal et al. (2019), we define a graph
with nodes representing utterances and directed
edges representing their relations: Rij = ui → uj ,
where the arrow represents the speaking order.
Intra-Dependency (Rintra ∈ {USi → USi}) rep-
resents intra-relations between the utterances (red
lines), and Inter-Dependency (Rinter ∈ {USi →
USj}, i ̸= j) represents the inter-relations between
the utterances (purple lines), as shown in Figure 3.
All nodes are initialized by concatenating contex-
tual and specific representations as hm = Con-
cat(ẑg

m, ẑℓ
m). And we show that window size is a

hyper-parameter that controls the context informa-
tion for each utterance and provide accurate intra-
and inter-speaker dependencies.

3.4.2 Graph Augmentation
Graph Augmentation (GA): Inspired by Zhu et al.
(2020), creating two augmented views by using
different ways to corrupt the original graph can

provide highly heterogeneous contexts for nodes.
By maximizing the mutual information between
two augmented views, we can improve the robust-
ness of the model and obtain distinguishable node
representations (You et al., 2020). However, there
are no universally appropriate GA methods for var-
ious downstream tasks (Xu et al., 2021), which
motivates us to design specific GA strategies for
MERC. Considering that MERC is sensitive to ini-
tialized representations of utterances, intra-speaker
and inter-speaker dependencies, we design three
corresponding GA methods:

- Feature Masking (FM): given the initialized
representations of utterances, we randomly
select p dimensions of the initialized repre-
sentations and mask their elements with zero,
which is expected to enhance the robustness
of JOYFUL to multimodal feature variations;

- Edge Perturbation (EP): given the graph G,
we randomly drop and add p% of intra- and
inter-speaker edges, which is expected to en-
hance the robustness of JOYFUL to local struc-
tural variations;

- Global Proximity (GP): given the graph G,
we first use the Katz index (Katz, 1953) to cal-
culate high-order similarity between intra- and
inter-speakers, and randomly add p% high-
order edges between speakers, which is ex-
pected to enhance the robustness of JOYFUL

to global structural variations (Examples in
Appendix A).

We propose a hybrid scheme for generating
graph views on both structure and attribute levels
to provide diverse node contexts for the contrastive
objective. Figure 2 (C) shows that the combina-
tion of (FM & EP) and (FM & GP) are adopted to
obtain two correlated views.

3.4.3 Graph Contrastive Learning
Graph contrastive learning adopts an L-th layer
GCNs as a graph encoder to extract node hidden
representations H(1) = {h(1)

1 , . . . , h(1)
m } and H(2)

= {h(2)
1 , . . . , h

(2)
m } for two augmented graphs,

where hi is the hidden representation for the i-th
node. We follow an iterative neighborhood aggre-
gation (or message passing) scheme to capture the
structural information within the nodes’ neighbor-
hood. Formally, the propagation and aggregation



of the ℓ-th GCN layer is:

a(i, ℓ) = AGG(ℓ) ({h(j, ℓ−1)|j ∈ Ni}) (9)

h(i, ℓ) = COM(ℓ) (h(i, ℓ−1) ⊕ a(i, ℓ)), (10)

where h(i, ℓ) is the embedding of the i-th node at
the ℓ-th layer, h(i, 0) is the initialization of the i-
th utterance, Ni represents all neighbour nodes
of the i-th node, and AGG(ℓ)(·) and COM(ℓ)(·)
are aggregation and combination of the ℓ-th GCN
layer (Hamilton et al., 2017). For convenience, we
define hi = h(i,L). After the L-th GCN layer, final
node representations of two views are H(1) / H(2).

In Figure 2 (C3), we design the intra- and inter-
view graph contrastive losses to learn distinctive
node representations. We start with the inter-view
contrastiveness, which pulls closer the representa-
tions of the same nodes in two augmented views
while pushing other nodes away, as depicted by the
red and blue dash lines in Figure 2 (C3). Given
the definition of our positive and negative pairs as
(h

(1)
i ,h

(2)
i )+ and (h

(1)
i ,h

(2)
j )−, where i ̸= j, the

inter-view loss for the i-th node is formulated as:

Liinter = − log
exp(sim(h

(1)
i ,h

(2)
i ))

m∑
j=1

exp(sim(h
(1)
i ,h

(2)
j ))

, (11)

where sim(·, ·) denotes the similarity between two
vectors, i.e., the cosine similarity in this paper.

Intra-view contrastiveness regards all nodes ex-
cept the anchor node as negatives within a partic-
ular view (green dash lines in Figure 2 (C3)), as
defined (h

(1)
i ,h

(1)
j )− where i ̸= j. The intra-view

contrastive loss for the i-th node is defined as:

Liintra = − log
exp(sim(h

(1)
i ,h

(2)
i ))

m∑
j=1

exp(sim(h
(1)
i ,h

(1)
j ))

. (12)

By combining the inter- and intra-view con-
trastive losses of Eqs.(11) and (12), the contrastive
objective function Lct is formulated as:

Lct =
1

2m

m∑
i=1

(Liinter + Liintra). (13)

3.5 Emotion Recognition Classifier
We use cross-entropy loss for classification as:

Lce = −
1

m

m∑
i=1

k∑
j=1

yji log (ŷ
j
i ), (14)

Dataset Train Valid Test

IEMOCAP(4-way) 3,200/108 400/12 943/31
IEMOCAP(6-way) 5,146/108 664/12 1,623/31
MELD 9,989/1,039 1,109/114 2,80/2,610
MOSEI 16,327/2,249 1,871/300 4,662/679

Table 1: Utterances/Conversations of four datasets.

where k is the number of emotion classes, m is the
number of utterances, ŷji is the i-th predicted label,
and yji is the i-th ground truth of j-th class.

Above all, combining the MF loss of Eq.(8),
contrastive loss of Eq.(13), and classification loss
of Eq.(14) together, the final objective function is

Lall = αLmf + βLct + Lce, (15)

where α and β are the trade-off hyper-parameters.
We give our pseudo-code in Appendix F.

4 Experiments and Result Analysis

4.1 Experimental Settings
Datasets and Metrics. In Table 1, IEMOCAP
is a conversational dataset where each utterance
was labeled with one of the six emotion categories
(Anger, Excited, Sadness, Happiness, Frustrated
and Neutral). Following COGMEN, two IEMO-
CAP settings were used for testing, one with four
emotions (Anger, Sadness, Happiness and Neu-
tral) and one with all six emotions, where 4-way
directly removes the additional two emotion la-
bels (Excited and Frustrated). MOSEI was labeled
with six emotion labels (Anger, Disgust, Fear, Hap-
piness, Sadness, and Surprise). For six emotion
labels, we conducted two settings: binary classi-
fication considers the target emotion as one class
and all other emotions as another class, and multi-
label classification tags multiple labels for each
utterance. MELD was labeled with six universal
emotions (Joy, Sadness, Fear, Anger, Surprise, and
Disgust). We split the datasets into 70%/10%/20%
as training/validation/test data, respectively. Fol-
lowing Joshi et al. (2022), we used Accuracy and
Weighted F1-score (WF1) as evaluation metrics.
Please note that the detailed label distribution of
the datasets is given in Appendix I.
Implementation Details. We selected the aug-
mentation pairs (FM & EP) and (FM & GP) for
two views. We set the augmentation ratio p=20%
and smoothing parameter η=0.2, and applied the
Adam (Kingma and Ba, 2015) optimizer with an
initial learning rate of 3e-5. For a fair comparison,



we followed the default parameter settings of the
baselines and repeated all experiments ten times to
report the average accuracy. We conducted the sig-
nificance by t-test with Benjamini-Hochberg (Ben-
jamini and Hochberg, 1995) correction (Please see
details in Appendix G).
Baselines. Different MERC datasets have dif-
ferent best system results, following COGMEN,
we selected SOTA baselines for each dataset.
For IEMOCAP-4, we selected Mult (Tsai et al.,
2019a), RAVEN (Wang et al., 2019), MTAG (Yang
et al., 2021), PMR (Lv et al., 2021), COG-
MEN and MICA (Liang et al., 2021) as our
baselines. For IEMOCAP-6, we selected Mult,
FE2E (Dai et al., 2021), DiaRNN (Majumder
et al., 2019), COSMIC (Ghosal et al., 2020), Af-
CAN (Wang et al., 2021), AGHMN (Jiao et al.,
2020), COGMEN and RGAT (Ishiwatari et al.,
2020) as our baselines. For MELD, we selected
DiaGCN (Ghosal et al., 2019), DiaCRN (Hu et al.,
2021), MMGCN (Wei et al., 2019), UniMSE (Hu
et al., 2022b), COGMEN and MM-DFN (Hu et al.,
2022a) as baselines. For MOSEI, we selected Mul-
Net (Shenoy et al., 2020), TBJE (Delbrouck et al.,
2020), COGMEN and MR (Tsai et al., 2020).

4.2 Parameter Sensitive Study

We first examined whether applying different data
augmentation methods improves JOYFUL. We ob-
served in Figure 4 (A) that 1) all data augmentation
strategies are effective 2) applying augmentation
pairs of the same type cannot result in the best per-
formance; and 3) applying augmentation pairs of
different types improves performance. Thus, we
selected (FM & EP) and (FM & GP) as the default
augmentation strategy since they achieved the best
performance (More details please see Appendix C).

JOYFUL has three hyperparameters. α and β de-
termine the importance of MF and GCL in Eq.(15),
and window size controls the contextual length of
conversations. In Figure 4 (B), we observed how α
and β affect the performance of JOYFUL by varying
α from 0.02 to 0.10 in 0.02 intervals and β from
0.1 to 0.5 in 0.1 intervals. The results indicated
that JOYFUL achieved the best performance when
α ∈ [0.06, 0.08] and β = 0.3. Figure 4 (C) shows
that when window_size = 8, JOYFUL achieved the
best performance. A small window size will miss
much contextual information, and a longer one con-
tains too much noise, we set it as 8 in experiments
(Details in Appendix D).

Method IEMOCAP 6-way (F1) ↑ Average ↑

Hap. Sad. Neu. Ang. Exc. Fru. Acc. WF1

Mult 48.23 76.54 52.38 60.04 54.71 57.51 58.04 58.10
FE2E 44.82 64.98 56.09 62.12 61.02 57.14 58.30 57.69
DiaRNN 32.88 78.08 59.11 63.38 73.66 59.41 63.34 62.85
COSMIC 53.23 78.43 62.08 65.87 69.60 61.39 64.88 65.38
Af-CAN 37.01 72.13 60.72 67.34 66.51 66.13 64.62 63.74
AGHMN 52.10 73.30 58.40 61.91 69.72 62.31 63.58 63.54
RGAT 51.62 77.32 65.42 63.01 67.95 61.23 65.55 65.22
COGMEN 51.91 81.72 68.61 66.02 75.31 58.23 68.26 67.63

JOYFUL 60.94† 84.42† 68.24 69.95† 73.54 67.55† 70.55† 71.03†

Table 2: Overall performance comparison on IEMO-
CAP (6-way) in the multimodal (A+T+V) setting. Sym-
bol † indicates that JOYFUL significantly surpassed all
baselines using t-test with p < 0.005.

Method Happy Sadness Neutral Anger WF1

Mult 88.4 86.3 70.5 87.3 80.4
RAVEN 86.2 83.2 69.4 86.5 78.6
MTAG 85.9 80.1 64.2 76.8 73.9
PMR 89.2 87.1 71.3 87.3 81.0
MICA 83.7 75.5 61.8 72.6 70.7
COGMEN 78.8 86.8 84.6 88.0 84.9

JOYFUL 80.1 88.1† 85.1† 88.1† 85.7†

Table 3: Overall performance comparison on IEMO-
CAP (4-way) in the multimodal (A+T+V) setting.

4.3 Performance of JOYFUL

Tables 2 & 3 show that JOYFUL outperformed all
baselines in terms of accuracy and WF1, improving
5.0% and 1.3% in WF1 for 6-way and 4-way, re-
spectively. Graph-based methods, COGMEN and
JOYFUL, outperform Transformers-based methods,
Mult and FE2E. Transformers-based methods can-
not distinguish intra- and inter-speaker dependen-
cies, distracting their attention to important utter-
ances. Furthermore, they use the cross-modal at-
tention layer, which can enhance common features
among modalities while losing uni-modal specific
features (Rajan et al., 2022). JOYFUL outperforms
other GNN-based methods since it explored fea-
tures from both the contextual and specific levels,
and used GCL to obtain more distinguishable fea-
tures. However, JOYFUL cannot improve in Happy
for 4-way and in Excited for 6-way since samples
in IEMOCAP were insufficient for distinguishing
these similar emotions (Happy is 1/3 of Neutral in
Fig. 4 (D)). Without labels’ guidance to re-sample
or re-weight the underrepresented samples, self-
supervised GCL, utilized in JOYFUL, cannot en-
sure distinguishable representations for samples of
minor classes by only exploring graph topological
information and vertex attributes.

Tables 4 & 5 show that JOYFUL outperformed
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Figure 4: (A) WF1 gain with different augmentation pairs; (B∼C) Parameter tuning; (D) Imbalanced dataset.

Methods Emotion Categories of MELD (F1) ↑ Average ↑

Neu. Sur. Sad. Joy Anger Acc. WF1

DiaGCN 75.97 46.05 19.60 51.20 40.83 58.62 56.36
DiaCRN 77.01 50.10 26.63 52.77 45.15 61.11 58.67
MMGCN 76.33 48.15 26.74 53.02 46.09 60.42 58.31
UniMSE 74.61 48.21 31.15 54.04 45.26 59.39 58.19
COGMEN 75.31 46.75 33.52 54.98 45.81 58.35 58.66
MM-DFN 77.76 50.69 22.93 54.78 47.82 62.49 59.46

JOYFUL 76.80 51.91† 41.78† 56.89† 50.71† 62.53† 61.77†

Table 4: Results on MELD with the multimodal setting.
Underline indicates our reproduced results.

Method Happy Sadness Anger Fear Disgust Surprise

Binary Classification (F1) ↑

Mul-Net 67.9 65.5 67.2 87.6 74.7 86.0
TBJE 63.8 68.0 74.9 84.1 83.8 86.1
MR 65.9 66.7 71.0 85.9 80.4 85.9
COGMEN 70.4 72.3 76.2 88.1 83.7 85.3
JOYFUL 71.7† 73.4† 78.9† 88.2 85.1† 86.1

Multi-label Classification (F1) ↑

Mul-Net 70.8 70.9 74.5 86.2 83.6 87.7
TBJE 68.4 73.9 74.4 86.3 83.1 86.6
MR 69.6 72.2 72.8 86.5 82.5 87.9
COGMEN 72.7 73.9 78.0 86.7 85.5 88.3
JOYFUL 70.9 74.6† 78.1† 89.4† 86.8† 90.5†

Table 5: Results on MOSEI with the multimodal setting.

the baselines in more complex scenes with multiple
speakers or various emotional labels. Compared
with COGMEN and MM-DFN, which directly ag-
gregate multimodal features, JOYFUL can fully ex-
plore features from each uni-modality by specific
representation learning to improve the performance.
The GCL module can better aggregate similar emo-
tional features for utterances to obtain better per-
formance for multi-label classification. We cannot
improve in Happy on MOSEI since the samples are
imbalanced and Happy has only 1/6 of Surprise,
making JOYFUL hard to identify it.

To verify the performance gain from each com-
ponent, we conducted additional ablation studies.
Table 6 shows multi-modalities can greatly improve
JOYFUL’s performance compared with each single
modality. GCL and each component of MF can

Modality IEMOCAP-4 IEMOCAP-6 MOSEI (WF1)

Acc. WF1 Acc. WF1 Binary Multi-label

Audio 64.8 63.3 49.2 48.0 51.2 53.3
Text 83.0 83.0 67.4 67.5 73.6 73.9
Video 44.6 43.4 28.2 28.6 23.6 24.4
A+T 82.6 82.5 67.5 67.8 74.7 74.9
A+V 68.0 67.5 52.7 52.5 61.7 62.4
T+V 80.0 80.0 65.2 65.5 73.1 73.4

w/o MF(B1) 85.3 85.4 70.0 70.3 76.2 76.5
w/o MF(B2) 85.2 85.1 69.2 69.5 75.8 76.2
w/o MF 85.2 84.9 69.0 69.2 75.4 75.8
COGMEN w/o GNN 80.1 80.2 62.7 62.9 72.3 72.9
w/o GCL 84.7 84.7 66.1 66.5 73.8 73.4

JOYFUL 85.6† 85.7† 70.5† 71.0† 76.9† 77.2†

Table 6: Ablation study with different modalities.

separately improve the performance of JOYFUL,
showing their effectiveness (Visualization in Ap-
pendix H). JOYFUL w/o GCL and COGMEN w/o
GNN utilize only a multimodal fusion mechanism
for classification without additional modules for
optimizing node representations. The comparison
between them demonstrates the effectiveness of the
multimodal fusion mechanism in JOYFUL.

Method One-Layer (WF1) Two-Layer (WF1) Four-Layer (WF1)

COGMEN JOYFUL COGMEN JOYFUL COGMEN JOYFUL

Unattack 67.63 71.03 63.21 71.05 58.39 70.96

5% Noisy 65.26 70.82 61.35 70.55 56.28 70.10
10% Noisy 62.26 70.33 59.24 70.45 53.21 69.23
15% Noisy 57.28 69.98 55.18 69.21 52.32 67.96
20% Noisy 54.22 68.52 51.79 68.82 50.72 67.23

Table 7: Adversarial attacks for GNN with different
depth on 6-way IEMOCAP.

We deepened the GNN layers to verify JOYFUL’s
ability to alleviate the over-smoothing. In Table 7,
COGMEN with four-layer GNN was 9.24% lower
than that with one-layer, demonstrating that the
over-smoothing decreases performance, while JOY-
FUL relieved this issue by using the GCL frame-
work. To verify the robustness, following Tan et al.
(2022), we randomly added 5%∼20% noisy edges
to the training data. In Table 7, COGMEN was



Figure 5: t-SNE visualization of IEMOCAP (6-way).

(A) Initialized Features (B) Output Features

I just miss him. (Sad)

It does look really beautiful over the water. (Happy) 

Oh, thanks. move here before you get married. (Excited)

0aybe we can find you something with juggling. (Neutral)

You above all have got to believe. (Angry)

So what, I'm not fast with women. (Frustrated)

Figure 6: Visualization of emotion probability, each first
row is JOYFUL and each second row is COGMEN.

easily affected by the noise, decreasing 10.8% per-
formance in average with 20% noisy edges, while
JOYFUL had strong robustness with only an average
2.8% performance reduction for 20% noisy edges.

To show the distinguishability of the node repre-
sentations, we visualize the node representations of
FE2E, COGMEN, and JOYFUL on 6-way IEMO-
CAP. In Figure 5, COGMEN and JOYFUL obtained
more distinguishable node representations than
FE2E, demonstrating that graph structure is more
suitable for MERC than Transformers. JOYFUL

performed better than COGMEN, illustrating the ef-
fectiveness of GCL. In Figure 6, we randomly sam-
pled one example from each emotion of IEMOCAP
(6-way) and chose best-performing COGMEN for
comparison. JOYFUL obtained more discriminate
prediction scores among emotion classes, show-
ing GCL can push samples from different emotion
class farther apart.

5 Conclusion

We proposed a joint learning model (JOYFUL) for
MERC, that involves a new multimodal fusion
mechanism and GCL module to effectively im-
prove the performance of MERC. The MR mecha-
nism can extract and fuse contextual and uni-modal
specific emotion features, and the GCL module
can help learn more distinguishable representations.

For future work, we plan to investigate the perfor-
mance of using supervised GCL for JOYFUL on
unbalanced and small-scale emotional datasets.
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Limitations

JOYFUL has a limited ability to classify minority
classes with fewer samples in unbalanced datasets.
Although we utilized self-supervised graph con-
trastive learning to learn a distinguishable repre-
sentation for each utterance by exploring vertex
attributes, graph structure, and contextual infor-
mation, GCL failed to separate classes with fewer
samples from the ones with more samples because
the utilized self-supervised learning lacks the label
information and does not balance the label distribu-
tion. Another limitation of JOYFUL is that its frame-
work was designed specifically for multimodal
emotion recognition tasks, which is not straight-
forward and general as language models (Devlin
et al., 2019; Liu et al., 2019) or image processing
techniques (LeCun et al., 1995). This setting may
limit the applications of JOYFUL for other mul-
timodal tasks, such as the multimodal sentiment
analysis task (Detailed experiments in Appendix J)
and the multimodal retrieval task. Finally, although
JOYFUL achieved SOTA performances on three
widely-used MERC benchmark datasets, its per-
formance on larger-scale and more heterogeneous
data in real-world scenarios is still unclear.
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A Example for Global Proximity

In Figure 7, given the network G and a modified
p, we first used the Katz index (Katz, 1953) to cal-
culate a high-order similarity between the vertices.
We considered the arbitrary number of high-order
distances. For example, second-order similarity be-
tween uA1 and uB4 as uA1 → uB4 = 0.83, third-order
similarity between uA1 and uB5 as uA1 → uB5 =
0.63, and fourth-order similarity between uA1 and
uB7 as uA1 → uB7 = 0.21. We then define the
threshold score as 0.5, where a high-order similar-
ity score less than the threshold will not be selected
as added edges. Finally, we randomly selected p%
edges (whose scores are higher than the threshold
score) and added them to the original graph G to
construct the augmented graph.

𝑢!"

𝑢#"

𝑢$"

𝑢%" 𝑢&'

𝑢('

𝑢)'

Speaker-B

Speaker-A

High-order similarity Score

𝑆(𝑢!" → 𝑢#$) = 0.83
𝑆(𝑢!" → 𝑢%$) = 0.63
𝑆(𝑢&" → 𝑢%$) = 0.51

𝑆(𝑢!" → 𝑢'$) = 0.21

𝑆(𝑢&" → 𝑢#$) = 0.35

Threshold Scores = 0.5

Add p ratio edges. 

Figure 7: Example of adding p% high-order edges to
explore global topological information of graph.

B Dimensions of Mathematical Symbols

Since we do not have much space to introduce
details about the dimensions of the mathematical
symbols in our main body. We carefully list all
the dimensions of the mathematical symbols of
IEMOCAP in Table 8. Mathematical symbols for
other two datasets please see our source code.

C Observations of Graph Augmentation

As shown in Figure 8, when we consider the combi-
nations of (FM & EP) and (FP & GP) as two graph
augmentation methods of the original graph, we
could achieve the best performance. Furthermore,
we have the following observations:

Obs.1: Graph augmentations are crucial. Without any
data augmentation, GCL module will not improve

Symbols Description

xv ∈ R512 Video Features
xa ∈ R100 Audio Features
xt ∈ R768 Text Features

Contextual Representation Learning

zg
v ∈ R512 Global Hidden Video Features

zg
a ∈ R100 Global Hidden Audio Features

zg
t ∈ R768 Global Hidden Text Features

zg
m ∈ R1,380 Global Combined Features

zcon ∈ R1,380 Topic-related Vector
ẑg
m ∈ R1,380 Global Output Features

Specific Representation Learning

zℓ
v ∈ R460 Local Hidden Video Features

zℓ
a ∈ R460 Local Hidden Audio Features

zℓ
t ∈ R460 Local Hidden Text Features

bm ∈ R460 Basic Features
z̃ℓ
{v,a,t} ∈ R460 Features in Shared Space

b̃m ∈ R460 Basic Features in Shared Space
W{v,a,t,b} ∈ R460×460 Trainable Matrices
ẑℓ
{v,a,t} ∈ R460 New Multimodal Features

ẑℓ
m ∈ R1,380 New Multimodal Combined Features

zℓ
m ∈ R1380 Original Combined Features

Graph Contrastive Learning (One GCN Layer)

(ẑℓ
g∥ẑ

ℓ
m) ∈ R2,760 Global-Local Combined Features

AGG ∈ R2,760×2,760 Parameters of Aggregation Layer
COM ∈ R2,760×5,520 Input/Output of Combination Layer
Wgraph ∈ R5,520×2,760 Dimention Reduction after COM
hm ∈ R2,760 Node Features of GCN Layer

Table 8: Mathematical symbols for IEMOCAP dataset.

accuracy, judging from the averaged WF1 gain of
the pair (None, None) in the upper left corners
of Figure 8. In contrast, composing an original
graph and its appropriate augmentation can benefit
the averaged WF1 of emotion recognition, judging
from the pairs (None, any) in the top rows or the
left-most columns of Figure 8. Similar observa-
tion were in graphCL (You et al., 2020), without
augmentation, GCL simply compares two original
samples as a negative pair with the positive pair
loss becoming zero, which leads to homogeneously
pushes all graph representations away from each
other. Appropriate augmentations can enforce the
model to learn representations invariant to the de-
sired perturbations through maximizing the agree-
ment between a graph and its augmentation.

Obs.2: Composing different augmentations benefits the
model’s performance more. Applying augmentation
pairs of the same type does not often result in the
best performance (see diagonals in Figure 8). In
contrast, applying augmentation pairs of different
types result in better performance gain (see off-
diagonals of Figure 8). Similar observations were
in SimCSE (Gao et al., 2021). As mentioned in
that study, composing augmentation pairs of dif-
ferent types correspond to a “harder” contrastive
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Figure 8: Average WF1 gain when contrasting different augmentation pairs, compared with training without graph
augmentation module.

prediction task, which could enable learning more
generalizable representations.

Obs.3: One view having two augmentations result in better
performance. Generating each view by two aug-
mentations further improve performance, i.e., the
augmentations FM & EP, or FM & GP. The aug-
mentation pair (FM & EP, FM & GP) results in
the largest performance gain compared with other
augmentation pairs. We conjectured the reason
is that simultaneously changing structural and at-
tribute information of the original graph can ob-
tain more heterogeneous contextual information
for nodes, which can be consider as “harder” ex-
ample to prompt the GCL model to obtain more
generalizable and robust representations.

P&F Happiness Sadness Neutral Anger Accuracy WF1

size=1 83.27 83.04 80.63 81.54 81.87 81.82
size=2 79.02 82.92 83.93 86.65 83.46 83.41
size=3 80.88 86.34 84.07 85.64 84.52 84.45
size=4 83.92 85.83 83.91 84.35 84.52 84.51
size=5 82.93 87.85 83.79 86.47 85.26 85.20
size=6 81.73 86.42 85.17 88.46 85.58 85.56
size=7 79.33 86.07 83.29 86.40 83.99 83.97
size=8 80.14 88.11 85.06 88.15 85.68 85.66
size=9 77.29 87.85 83.56 87.19 84.41 84.37
size=10 80.00 87.47 85.29 88.64 85.68 85.66
size=ALL 79.87 84.35 83.20 84.75 83.24 83.24

Table 9: Results for various window sizes for graph
formation on the IEMOCAP (4-way).

P&F Hap. Sad. Neu. Ang. Exc. Fru. Acc. WF1

size=1 57.85 80.43 62.88 60.61 70.76 60.99 65.50 65.85
size=2 56.27 79.57 64.17 60.87 72.50 61.52 65.93 66.36
size=3 60.80 80.26 66.06 64.47 73.17 62.70 67.71 68.09
size=4 59.95 80.79 67.96 67.18 71.60 64.89 68.64 69.05
size=5 60.06 81.42 68.23 66.33 73.88 63.24 68.76 69.17
size=6 60.94 84.42 68.24 69.95 73.54 67.55 70.55 71.03
size=7 59.84 80.53 67.93 68.12 73.72 63.91 68.82 69.26
size=8 57.66 82.17 70.56 67.53 73.92 64.79 69.75 70.12
size=9 58.01 81.13 70.22 65.42 75.05 61.49 68.82 69.12
size=10 59.77 81.84 69.17 65.85 73.56 63.51 68.95 69.38
size=ALL 54.74 78.75 66.58 64.56 68.63 63.46 66.42 66.80

Table 10: Results for various window sizes for graph
formation on the IEMOCAP (6-way).

D Parameters Sensitivity Study

In this section, we give more details about param-
eter sensitivity. First, as shown in Tables 9 & 10,
when the window size ∈ [6, 8] for IEMOCAP (6-
way) and the window size is 6 for IEMOCAP (4-
way), JOYFUL achieved the best performance. A
small window size will miss much contextual in-
formation, and a large-scale window size contains
too much noise (topic will change over time). We
set the window size for past and future to 6.

JOYFUL also has two hyper-parameters: α and
β, which balance the importance of MF module
and GCL module in Eq.(15). Specifically, as shown
in Figure 9, we observed how α and β affect the
performance of JOYFUL by varying α from 0.02 to
0.10 in 0.02 intervals and β from 0.1 to 0.5 in 0.1 in-
tervals. The results indicate that JOYFUL achieved
the best performance when α ∈ [0.06, 0.08] and
β ∈ [0.2, 0.3] on IEMOCAP and and when α ∈
[0.06, 0.1] and β = 0.1 on MOSEI. The reason
why these parameters can affect the results is that
when α< 0.06, MF becomes weaker and represen-
tations contain too much noise, which cannot pro-
vide a good initialization for downstream MERC
tasks. When α >0.1, it tends to make reconstruc-
tion loss more important and JOYFUL tends to ex-
tract more common features among multiple modal-
ities and loses attention to explore features from
uni-modality. When β is small, graph contrastive
loss becomes weaker, which leads to indistinguish-
able representation. A larger β wakes the effect
of MF, leading to a local optimal solution. We set
α=0.06 and β=0.3 for IEMOCAP and MELD. We
set α=0.06 and β =0.1 for MOSEI.

E Uni-modal Performance

The focus of this study was multimodal emo-
tion recognition. However, we also compared
JOYFUL with uni-modal methods to evaluate its
performance of JOYFUL. We compared it with
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Figure 9: Parameters tuning for α and β on validation datasets for all multimodal emotion recognition tasks.

Method Modality WF1

IEMOCAP 6-way

CESTa Text 67.10
SumAggGIN Text 66.61
DiaCRN Text 66.20
DialogXL Text 65.94
DiaGCN Text 64.18
COGMEN Text 66.00
DAG-ERC Fine-tune Text (RoBERTa-large) 68.03

JOYFUL
Text (Sentence-BERT) 67.48
Text (RoBERTa-large) 68.05

Fine-tune Text (RoBERTa-large) 68.45
A+T+V 71.03

Table 11: Overall performance comparison on MOSEI
with Text Modality.

DAG-ERC (Shen et al., 2021b), CESTa (Wang
et al., 2020), SumAggGIN (Sheng et al., 2020),
DiaCRN (Hu et al., 2021), DialogXL (Shen et al.,
2021a), DiaGCN (Ghosal et al., 2019), and COG-
MEN (Joshi et al., 2022). Following COGMEN,
text-based models were specifically optimized for
text modalities and incorporated changes to ar-
chitectures to cater to text. As shown in Ta-
ble 11, JOYFUL, being a fairly generic architecture,
still achieved better or comparable performance
with respect to the state-of-the-art uni-modal meth-
ods. Adding more information via other modali-
ties helped to further improve the performance of
JOYFUL (Text vs A+T+V). When using only text
modality, the DAG-ERC baseline could achieve
higher WF1 than JOYFUL. And we conjecture the
main reasons is: DAG-ERC (Shen et al., 2021b)
fine-tuned RoBERTa large model (Liu et al., 2019),
with 354 million parameters, as their text encoder.
By fine-tuning on RoBERTa large model under
the guidance of downstream emotion recognition
signals, RoBERTa large model can provide the
most suitable text features for ERC. Compared
with DAG-ERC, JOYFUL and other methods di-
rectly use Sentence-BERT (Reimers and Gurevych,

2019), with 110 million parameters, as their text
encoder without fine-tuning on ERC datasets.

To verify whether the above inference is rea-
sonable, we used RoBERTa large model as our
text feature extractor called Text (RoBERTa-large).
And we fine-tuned RoBERTa large model on the
downstream IEMPCAP (6-way) dataset, following
the same method of DAG-ERC called Fine-tune
Text (RoBERTA-large). The observation meets our
intuition. With RoBERTa large model, JOYFUL im-
proved the performance (68.05 vs 67.48) compared
with Sentence-BERT as our text encoder. And
JOYFUL could obtain better performance (68.45
vs 68.03) in terms of WF1 than DAG-ERC with
fine-tuned RoBERTa-large, demonstrating that fine-
tuning large-scale model can help obtain richer text
features to improve the performance. However,
considering a fair comparison with other multi-
modal emotion recognition baselines (they do not
have the fine-tuning process (Joshi et al., 2022;
Ghosal et al., 2019)) and saving the additional
time-consuming on fine-tuning, we directly adopt
Sentence-BERT as our text encoder for IEMOCAP.

F Pseudo-Code of JOYFUL

As shown in Algorithm 1, to make JOYFUL easy to
understand, we also provide a pseudo-code.

G Benjamini-Hochberg Correction

Benjamini-Hochberg Correction (B-H) (Benjamini
and Hochberg, 1995) is a powerful tool that de-
creases the false discovery rate. Considering the
reproducibility of the multiple significant test, we
introduce how we adopt the B-H correction and
give the hyper-parameter values that we used. We
first conduct a t-test (Yang et al., 1999) with default
parameters3 to calculate the p-value between each
comparison method with JOYFUL. We then put the
individual p-values in ascending order as input to

3scipy.stats.ttest_ind.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html


Algorithm 1: Overall process of JOYFUL

input :Visual features xv;
Audio features xa;
Text features xt;
Parameters: α, β, Window size

output :Emotion recognition label.

Initialize trainable parameters;
for epoch← 1 to epoch num do

Global Contextual Fusion ẑg
m;

Specific Modality Fusion ẑℓ
m=(zg

v∥zg
a∥zg

t );
// Compute multimodal fusion loss

Compute Lmf , in accordance with Eq.(8);
Feature Concatenation h = (ẑg

m∥ẑℓ
m);

Adopt h as initialization for Graph;
// Generate two augmented views

Apply FM & EP to generate view: G(1);
Apply FM & GP to generate view: G(2);
// Extract features of two views

H(1) = GCNs(G(1)), H(2) = GCNs(G(2)) ;
// Compute contrastive learning loss

Compute Lct, in accordance with Eq.(13) ;
// Aggregate extracted features

H = H(1) +H(2) ;
// Compute emotion recognition loss

Compute Lce, in accordance with Eq.(14);
// Joint training

Compute Lall, in accordance with Eq.(15);
// Optimize with Adam optimizer

Adopt classifier on H to predict the emotional label.

calculate the p-value corrected using the B-H cor-
rection. We directly use the “multipletests(*args)”
function from python package4 and set the hyper-
parameter of the false discovery rate Q = 0.05,
which is a widely used default value (Puoliväli
et al., 2020). Finally, we obtain a cut-off value
as the output of the multipletests function, where
cut-off is a dividing line that distinguishes whether
two groups of data are significant. If the p-value
is smaller than the cut-off value, we can conclude
that two groups of data are significantly different.

The use of t-test for testing statistical signifi-
cance may not be appropriate for F-scores, as men-
tioned in Dror et al. (2018), as we cannot assume
normality. To verify whether our data meet the
normality assumption and the homogeneity of vari-
ances required for the t-test, following Shapiro and
Wilk (1965) and Levene et al. (1960), we conducted
the following validation. First, we performed the
Shapiro-Wilk test on each group of experimental
results to determine whether they are normally dis-
tributed. Under the constraint of a significance
level (alpha=0.05), all p-values resulting from the
Shapiro-Wilk test 5 for the baselines and our model

4statsmodels.stats.multitest.multipletests.html
5scipy.stats.shapiro.html

were greater than 0.05. This indicates that the re-
sults of the baselines and our model all adhere
to the assumption of normality. For example, in
IEMOCAP-4, p-values for [Mult, RAVEN, MTAG,
PMR, MICA, COGMEN, JOYFUL] are [0.903,
0.957, 0.858, 0.978, 0.970, 0.969, 0.862]. Further-
more, we used the Levene’s test (Schultz, 1985)
to check for homogeneity of variances between
baselines and our model. Under the constraint of
a significance level (alpha = 0.05), we found that
our p-values are greater than 0.05, indicating the
homogeneity of the variances between the base-
lines and our model. For example, we obtained
p-values 0.3101 and 0.3848 for group-based base-
lines on IEMOCAP-4 and IEMOCAP-6, respec-
tively. Since we were able to demonstrate that all
baselines and our model conform to the assump-
tions of normality and homogeneity of variances,
we believe that the significance tests we reported
are accurate.

H Representation Visualization

We visualized the node features to understand the
function of the multimodal fusion mechanism and
the GCL-based node representation learning com-
ponent, as shown in Figure 10. Figure 10 (A) shows
the concatenated multimodal features on the input
side. Figure 10 (B) shows the representation of
utterances after the feature fusion module. Fig-
ure 10 (C) shows the representation of the utter-
ances after the GCL module (Eq.(10)) and before
the pre-softmax layer (Eq.(11)). We observed that
utterances could be roughly separated after the fea-
ture fusion mechanism, which indicates that the
multimodal fusion mechanism can learn distinctive
features to a certain extent. After GCL-based mod-
ule, JOYFUL can be easily separated, demonstrating
that GCL can provide distinguishable representa-
tion by exploring vertex attributes, graph structure,
and contextual information from datasets.

I Labels Distribution of Datasets

In this section, we list the detailed label distribu-
tion of the three multimodal emotion recognition
datasets MELD (Table 12), IEMOCAP 4-way (Ta-
ble 13), IEMOCAP 6-way (Table 14) and MOSEI
(Table 15) in the draft.

J Multimodal Sentiment Analysis

We conducted experiments on two publicly avail-
able datasets, MOSI (Zadeh et al., 2016) and MO-

https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html


(A) Initial feature visualization (B) Feature fusion visualization (C) Feature GCL visualization

Figure 10: t-SNE visualization of IEMOCAP (6-way) features.

MELD Train Valid Test

Anger 1,109 153 345
Disgusted 271 22 68
Fear 268 40 50
Joy 1,743 163 402
Neutral 4,710 470 1,256
Sadness 683 111 208
Surprise 1,205 150 281

Total 9,989 1,109 2,610

Table 12: Labels distribution of MELD dataset.

IEMOCAP 4-way Train Valid Test

Happy 453 51 144
Sad 783 56 245
Neutral 1,092 232 384
Angry 872 61 170

Total 3,200 400 943

Table 13: Labels distribution of IEMOCAP 4-way.

SEI (Zadeh et al., 2018), to investigate the perfor-
mance of JOYFUL on the multimodal sentiment
analysis (MSA) task.
) Datasets: MOSI contains 2,199 utterance video
segments, and each segment is manually annotated
with a sentiment score ranging from -3 to +3 to
indicate the sentiment polarity and relative senti-
ment strength of the segment. MOSEI contains
22,856 movie review clips from the YouTube web-
site. Each clip is annotated with a sentiment score
and an emotion label. And the exact number of sam-
ples for training/validation/test are 1,284/229/686
for MOSI and 16,326/1,871/4,659 for MOSEI.
) Metrics: Following previous studies (Han et al.,
2021a; Yu et al., 2021), we utilized evaluation met-
rics: mean absolute error (MAE) measures the ab-
solute error between predicted and true values. Per-
son correlation (Corr) measures the degree of pre-
diction skew. Seven-class classification accuracy
(ACC-7) indicates the proportion of predictions
that correctly fall into the same interval of seven

IEMOCAP 6-way Train Valid Test

Happy 459 45 144
Sad 746 93 245
Neutral 1,161 163 384
Angry 854 79 170
Excited 576 166 299
Frustrated 1,350 118 381

Total 5,146 644 1,623

Table 14: Labels distribution of IEMOCAP 6-way.

MOSEI Train Valid Test

Happy 8,735 1,005 2,505
Sad 4,269 520 1,129
Angry 3,526 338 1,071
Surprise 1,642 203 441
Disgusted 2,955 281 805
Fear 1,331 176 385

Total 22,458 2,523 6,336

Table 15: Labels distribution of MOSEI dataset.

intervals between -3 and +3 as the corresponding
truths. And binary classification accuracy (ACC-2)
was computed for non-negative/negative classifica-
tion results.
) Baselines: We compared JOYFUL with three
types of advanced multimodal fusion frameworks
for the MSA task as follows, including current
SOTA baselines MMIM (Han et al., 2021b) and
BBFN (Han et al., 2021a): (1) Early multimodal fu-
sion methods, which combine the different modal-
ities before they are processed by any neural
network models. We utilized Multimodal Fac-
torization Model (MFM) (Tsai et al., 2019b),
and Multimodal Adaptation Gate BERT (MAG-
BERT) (Rahman et al., 2020) as baselines. (2)
Late multimodal fusion methods, which combine
the different modalities before the final decision
or prediction layer. We utilized multimodal Trans-
former (MuIT) (Tsai et al., 2019a), and modal-
temporal attention graph (MTAG) (Yang et al.,
2021) as baselines. (3) Hybrid multimodal fusion



Case Input modality Target

Text Visual Acoustic MSA MERC

Case A
Plot to it than that the action scenes were

my favorite parts through it’s.

Smiling face

Relaxed wink

Stress

Pitch variation
+1.666 Positive

Case B
You must promise me that you’ll survive,

you won’t give up.

Full of tears

in his eyes

The voice is

weak and trembling
-1.200 Negative

Table 16: Case study on the importance of each modality for MSA and MERC tasks. Blue in Text modality marks
the contents including the strength of sentiments. Underline marks fragments contributing to the target on MERC.

methods combine early and late multimodal fu-
sion mechanisms to capture the consistency and the
difference between different modalities simultane-
ously. We utilized modality-invariant and modality-
specific representations for MSA (MISA) (Haz-
arika et al., 2020), Self-Supervised multi-task learn-
ing for MSA (Self-MM) (Yu et al., 2021), Bi-
Bimodal Fusion Network (BBFN) (Han et al.,
2021a), and MultiModal InfoMax (MMIM) (Han
et al., 2021b) as baselines.
) Implementation Details: The results of pro-
posed JOYFUL were averaged over ten runs using
random seeds. We keep all hyper-parameters and
implementations the same as in the MERC task
reported in Sections 4.1 and 4.2. To make JOYFUL

fit in the MSA task, we replace the current cross-
entropy loss Lce in Eq. (15) by mean absolute error
loss Lmae as follows:

Lmae =
1

m

m∑
i=1

|ŷi − yi|, (16)

where ŷi is the predicted value for the i-th sample,
yi is the truth label for the i-th label, m is the total
number of samples, and | · | is the L1 norm. We
denote this model as JOYFUL+MAE.

Experimental results on the MOSI and MOSEI
datasets are listed in Table 17. Although the pro-
posed JOYFUL could outperform most of the base-
lines (above the blue line), it performs worse than
current SOTA models: BBFN and MMIM (below
the blue line). We conjecture the main reasons
are: when determining the strength of sentiments,
compared with visual and acoustic modalities that
may contain much noise data, text modality is more
important for prediction (Han et al., 2021a). Ta-
ble 16 lists such examples, where textual modality
is more indicative than other modalities for the
MSA task. Because the two baselines: BBFN (Han
et al., 2021a) and MMIN (Han et al., 2021b), pay

Method MOSI MOSEI

MAE ↓Corr ↑Acc-7 ↑Acc-2 ↑ MAE ↓Corr ↑Acc-7 ↑Acc-2 ↑

MFM 0.877 0.706 35.4 81.7 0.568 0.717 51.3 84.4
MAG-BERT 0.731 0.789 ✗ 84.3 0.539 0.753 ✗ 85.2
MulT 0.861 0.711 ✗ 84.1 0.580 0.703 ✗ 82.5
MTAG 0.866 0.722 0.389 82.3 ✗ ✗ ✗ ✗
MISA 0.804 0.764 ✗ 82.10 0.568 0.724 ✗ 84.2
Self-MM 0.713 0.789 ✗ 85.98 0.530 0.765 ✗ 85.17

BBFN 0.776 0.755 45.00 84.30 0.529 0.767 54.80 86.20
MMIM 0.700 0.800 46.65 86.06 0.526 0.772 54.24 85.97

JOYFUL+MAE 0.711 0.792 45.58 85.87 0.529 0.768 53.94 85.68

Table 17: Experimental results on the MOSI and MO-
SEI datasets. ✗ indicates unreported results. Bold in-
dicates the least MAE, highest Corr, Acc-7, and Acc-2
scores for each dataset.

more attention to the text modality than visual and
acoustic modalities during multimodal feature fu-
sion, they may achieve low MAE, high Corr, Acc-2,
and Acc-7. Specifically, BBFN (Han et al., 2021a)
proposed a Bi-bimodal fusion network to enhance
the text modality’s importance by only considered
text-visual and text-acoustic interaction for fea-
tures fusion. Conversely, considering the three
modalities are all important for the MERC task
as presented in Table 16, we designed JOYFUL to
utilize the concatenation of the three modalities
representations for prediction. Similar to our pro-
posal, MISA and MAG-BERT considered the three
modalities equally important during feature fusion
but performed worse than SOTA baselines on the
MSA task. In our consideration, because of such at-
tention to modalities, JOYFUL outperformed SOTA
baselines on the MERC task but underperformed
SOTA baselines on the MSA task.


